Bell-type inequalities for parametric families of triangular norms
نویسندگان
چکیده
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library In recent work we have shown that the reformulation of the classical Bell inequalities into the context of fuzzy probability calculus leads to related inequalities on the commutative conjunctor used for modelling pointwise fuzzy set intersection. Also, an important role has been attributed to commutative quasi-copulas. In this paper, we consider these new Bell-type inequalities for continuous t-norms. Our contribution is twofold: first, we prove that ordinal sums preserve these Bell-type inequalities; second, for the most important parametric families of continuous Archimedean t-norms and each of the inequalities, we identify the parameter values such that the corresponding t-norms satisfy the inequality considered.
منابع مشابه
Two-party Bell inequalities derived from combinatorics via triangular elimination
Abstract. Bell inequalities, originally introduced as a method to prove that some quantum states show nonlocal behavior, are now studied as a method to capture the extent of the nonlocality of quantum states. Tight Bell inequalities are considered to be more important than redundant ones. Despite the increasing importance of the study of Bell inequalities, few kinds of tight Bell inequalities h...
متن کاملDeriving Tight Bell Inequalities for 2 Parties with Many 2-valued Observables from Facets of Cut Polytopes
Relatively few families of Bell inequalities have previously been identified. Some examples are the trivial, CHSH, Imm22, and CGLMP inequalities. This paper presents a large number of new families of tight Bell inequalities for the case of many observables. For example, 44,368,793 inequivalent tight Bell inequalities other than CHSH are obtained for the case of 2 parties each with 10 2-valued o...
متن کاملLinear optimization on Hamacher-fuzzy relational inequalities
In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated where the feasible region is formed as the intersection of two inequality fuzzy systems and Hamacher family of t-norms is considered as fuzzy composition. Hamacher family of t-norms is a parametric family of continuous strict t-norms, whose members are decreasing functions of ...
متن کاملLinear optimization on the intersection of two fuzzy relational inequalities defined with Yager family of t-norms
In this paper, optimization of a linear objective function with fuzzy relational inequality constraints is investigated where the feasible region is formed as the intersection of two inequality fuzzy systems and Yager family of t-norms is considered as fuzzy composition. Yager family of t-norms is a parametric family of continuous nilpotent t-norms which is also one of the most frequently appli...
متن کاملBell inequalities stronger than the CHSH inequality for 3-level isotropic states
Abstract We show that some two-party Bell inequalities with two-valued observables are stronger than the CHSH inequality for 3⊗3 isotropic states in the sense that they are violated by some isotropic states in the 3 ⊗ 3 system that do not violate the CHSH inequality. These Bell inequalities are obtained by applying triangular elimination to the list of known facet inequalities of the cut polyto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Kybernetika
دوره 40 شماره
صفحات -
تاریخ انتشار 2004